MOLECULAR PARAMETERS OF DIHALIDES OF IIB GROUP ELEMENTS

A. N. Pandey ${ }^{a}$ and Bohuslav Strauch ${ }^{a}$, U. P. Verma ${ }^{b}$ and D. R. Singh ${ }^{b}$
${ }^{\text {a }}$ Department of Inorganic Chemistry,
Charles University, 12840 Prague 2, Czechoslovakia and
${ }^{b}$ Molecular Spectroscopy Research Laboratory,
Department of Physics, Meerut College, Meerut 250 001, India

Received May 15th, 1984

The molecular parameters, i.e. force constants, mean amplitudes of vibrations, bond polarizability derivatives and mean molecular polarizabilities have been studied for $\mathbf{M X}_{2}$ and $\mathrm{MXZ}(\mathrm{M}=\mathrm{Zn}$, $\mathrm{Cd}, \mathrm{Hg} ; X$ or $Z=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ but $\mathrm{X} \neq \mathrm{Z}$) type halides of zinc group elements on the basis of current available spectroscopic and structural data. The analysis of the result for CdFBr demands a reinvestigation of the spectroscopic study in detail. The results of the present investigations will be helpful in the interpretation of the Raman intensity and refractometry data whenever available.

The infrared and Raman spectra of matrix isolated binary halides of the elements of group IIB have been studied in detail by Loewenschuss and his coworkers ${ }^{1-3}$. Recently the vibrational spectra of the species of the type MF_{2} and $\mathrm{MFX}(\mathrm{M}=\mathrm{Zn}$, $\mathrm{Cd}, \mathrm{Hg} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) have been investigated by them ${ }^{4}$ and the existence of the MFX molecular species have been pointed out for the first time. They have also reported the valence force constants for the systems which involve ignorance of the interaction force constant. The present work has been undertaken with the purpose of obtaining additional information on the molecular parameters viz. force constants, mean amplitudes of vibration, bond polarizability derivatives and mean molecular polarizabilities in the light of current available data.

Details of Computations

Wilson's FG matrix method has been followed for the computation of force constants under model force fields ${ }^{5-7}$. The second order secular equation has been solved using $L-F$ approximation method ${ }^{8}$.

The mean amplitudes of vibrations have been studied using Cyvin's secular equation ${ }^{6.9}$ $\left|\Sigma G^{-1}-\Delta E\right|=0$. Here the symbols have their usual meanings ${ }^{6}$.

The bond polarizability derivatives have been evaluated using the expression of Lippincott and Nagarajan ${ }^{10}$. It is given by the relation

$$
\frac{\partial \bar{\alpha}}{\partial R}=\frac{1}{3}\left(\frac{n}{2}\right) A_{12} \frac{\sigma}{a_{0}} R^{3},
$$

where $(n / 2)$ is the bond order, A_{12} the root mean square of delta function strength of atoms involved in bonding ${ }^{11}$, σ the polarity correction - the Pauling covalent character of the bond, determined by

$$
\exp \left[-\frac{1}{4}\left(x_{1}-x_{2}\right)^{2}\right]
$$

where x is the electronegativity of the atom on Pauling scale and R the interatomic distance. a_{0} is the first Bohr's radius.

Table I
$G V F F$ and $O V F F$ force constants (in $10^{2} \mathrm{Nm}^{-1}$) of MX_{2} type molecules ${ }^{a}$

Molecule	$f_{\mathrm{r}}(\mathrm{K})$	$f_{\mathrm{rI}}(F)$	$f_{\Phi}\left(D-2 F^{\prime}\right)$	Lit.
ZnF_{2}	$\begin{aligned} & 3 \cdot 99(4 \cdot 17) \\ & 4 \cdot 001 \end{aligned}$	$\begin{aligned} & -0.18(-0.18) \\ & -0.0338 \end{aligned}$	$\begin{aligned} & 0.083(0.17) \\ & 0.07961 \end{aligned}$	$\begin{gathered} \text { P.W. } \\ 4 \end{gathered}$
CdF_{2}	$\begin{aligned} & 3.55(3.66) \\ & 3.554 \end{aligned}$	$\begin{aligned} & -0.11(-0.11) \\ & -0.1374 \end{aligned}$	$\begin{aligned} & 0.061(0 \cdot 12) \\ & 0.06122 \end{aligned}$	$\begin{gathered} \text { P.W. } \\ 4 \end{gathered}$
HgF_{2}	$\begin{aligned} & 3.74(3.87) \\ & 3.739 \end{aligned}$	$\begin{aligned} & -0.14(-0.14) \\ & -0.1334 \end{aligned}$	$\begin{aligned} & 0.14(0.27) \\ & 0 \cdot 1359 \end{aligned}$	$\begin{gathered} \text { P.W. } \\ 4 \end{gathered}$
ZnCl_{2}	$\begin{aligned} & 2 \cdot 69(2 \cdot 667) \\ & 2 \cdot 66(2 \cdot 668) \end{aligned}$	$\begin{array}{r} 0.027(0.027) \\ (0.027) \end{array}$	$\begin{array}{r} 0.439(0.879) \\ (0.872) \end{array}$	$\begin{gathered} \text { P.W. } \\ 7 \end{gathered}$
CdCl_{2}	$\begin{gathered} 2.25(2.26) \\ (2 \cdot 142) \end{gathered}$	$\begin{gathered} -0.013(-0.013) \\ - \end{gathered}$	$0 \cdot 050(0 \cdot 103)$	$\begin{gathered} \text { P.W. } \\ 7 \end{gathered}$
HgCl_{2}	$\begin{array}{r} 2 \cdot 61(2.63) \\ (2.63) \end{array}$	$\begin{array}{r} 0.037(0.037) \\ (0.022) \end{array}$	$\begin{array}{ll} 0.04 & (0.08) \\ (0.076) \end{array}$	$\begin{gathered} \text { P.W. } \\ 7 \end{gathered}$
ZnBr_{2}	$\begin{array}{r} 2 \cdot 34(2 \cdot 186) \\ (2 \cdot 186) \end{array}$	$\begin{array}{r} 0 \cdot 152(0 \cdot 152) \\ (0 \cdot 152) \end{array}$	$\begin{array}{r} 0.346(0.692) \\ (0.692) \end{array}$	$\begin{gathered} \text { P.W. } \\ 7 \end{gathered}$
CdBr_{2}	$\begin{array}{r} 1.96(1.98) \\ (1.93) \end{array}$	$\begin{aligned} & 0 \cdot 00017 \\ & \quad(0 \cdot 00017) \end{aligned}$	$0.037(0.075)$	$\begin{gathered} \text { P.W. } \\ 7 \end{gathered}$
HgBr_{2}	$\begin{array}{r} 2.24(2.249) \\ (2.249) \end{array}$	$\begin{array}{r} -0.006(-0.006) \\ (-0.006) \end{array}$	$\begin{array}{r} 0.022(0.044) \\ (0.044) \end{array}$	$\begin{gathered} \text { P.W. } \\ 7 \end{gathered}$
ZnI_{2}	$\begin{array}{r} 1.99(1.83) \\ (1.77) \end{array}$	$\begin{array}{ll} 0 \cdot 16 & (0 \cdot 16) \\ & (0 \cdot 17) \end{array}$	$0.03(0.06)$ -	$\begin{gathered} \text { P.W. } \\ 7 \end{gathered}$
CdI_{2}	$\begin{array}{r} 1.67(1.66) \\ (1.611) \end{array}$	$0 \cdot 008(0 \cdot 008)$	$0 \cdot 185(0.37)$	$\begin{gathered} \text { P.W. } \\ 7 \end{gathered}$
HgI_{2}	$\begin{array}{r} 1.83(1.854) \\ (1.854) \end{array}$	$\begin{array}{r} -0.029(-0.028) \\ (-0.028) \end{array}$	$\begin{array}{r} 0.018(0.036) \\ (0.036) \end{array}$	$\begin{gathered} \text { P.W. } \\ 7 \end{gathered}$

[^0]The mean molecular polarizability has been computed employing delta function model due to Lippincott and Stutman ${ }^{12}$. It is given by the relation

$$
\alpha_{\mathrm{M}}=\frac{1}{3}\left[\sum_{\mathrm{i}} \sigma_{\mathrm{i}} \alpha_{\| \mathrm{b}}+\sum_{\mathrm{j}} f_{\mathrm{j}} \alpha_{\mathrm{j}}+n_{\mathrm{df}} \sum x_{\mathrm{j}}^{2} \alpha_{\mathrm{j}} \sum_{\mathrm{j}} x_{\mathrm{j}}^{2}\right],
$$

where the first term includes the contribution of bond region electrons, the second term takes into account the contribution of non-bond region electrons and the last term represents the contribution of bond perpendicular components. $\alpha_{\| \text {bi }}$ is the bond parallel component of the polarizability, f_{j} is the fraction of the electrons of the atom which are not in the bond region and α_{j} is the atomic polarizability. n_{df} is the number of residual degrees of freedom which is in present case six for ZnF_{2} (non-linear) and five for others.

RESULTS AND DISCUSSION

The spectral and structural data for the molecules under present investigation are taken from lit. ${ }^{1,4,7,13,14}$. The results of the general valence force field (GVFF) and orbital valence force field ($O V F F$) for MX_{2}-type molecules are collected in Table I. Their values are compared with the Table I results available in $\mathrm{lit}^{4,7}$. Except zinc diffuoride other molecules are linear.

A survey of the Table I shows that the bond stretching force constant, f_{r}, varies in the order: $f_{\mathrm{ZnX}}>f_{\mathrm{CdX}}<f_{\mathrm{HgX}}(\mathrm{X}=\mathrm{F}, \mathrm{C}, \mathrm{Br}, \mathrm{I})$. This trend in not exhibited

Table II

Stretching and bond-bond interaction force constants (in $10^{2} \mathrm{Nm}^{-1}$) of MFX type molecules

Molecule	$f_{(M-X)}$	$f_{(\mathrm{M}-\mathrm{F})}$	$f_{\text {MX, MF }}$	Lit. ${ }^{\text {a }}$
ZnFCl	$2 \cdot 50$	$4 \cdot 22$	$0 \cdot 196$	P.W.
	$2 \cdot 615$	3.965	-	4
ZnFBr	$2 \cdot 28$	4.03	0.46	P.W.
	$2 \cdot 341$	$3 \cdot 805$	-	4
CdFCl	$2 \cdot 19$	$3 \cdot 61$	-0.28	P.W.
	2.237	3.497	--	4
CdFBr	$2 \cdot 69$	$3 \cdot 29$	0.35	P.W.
	$2 \cdot 764$	$3 \cdot 151$	-	4
HgFCl	$2 \cdot 72$	$3 \cdot 60$	$0 \cdot 196$	P.W.
	$2 \cdot 691$	$2 \cdot 554$	-	4
HgFBr	2.44	$3 \cdot 45$	$0 \cdot 197$	P.W.
	$2 \cdot 454$	3.451	-	4

[^1]by the corresponding force constant in OVFF model for the dibromides and diiodides of zinc and mercury. This anomaly can be understood in term of non-bonded interaction. The larger value of the non-bonded interaction force constant (F) for the dibromide and diiodide of zinc as compared to the corresponding halides of mercury is responsible for diminishing the magnitude of the stretching force constant. The relative strength of the chemical bonds also follows the same trend as the stretching force constants in the dihalides of the elements of IIB group. Further it is noted that the stretching force constant decreases with the increase of the mass and decrease of the electronegativity of the ligand atom.

There are only two vibrational wavenumbers available for XYZ type linear molecules. The stretching and interaction force constants for these molecules are summarized in Table II. The results are also compared with the values given in lit. ${ }^{4}$. A slight difference between force constants is on account of the ignorance of inter-

Table III

Mean amplitudes of vibration (in $10^{-10} \mathrm{~m}$)

System	X-- Y			$\mathbf{Y}-\mathrm{Y}$		
	0 K	298.15 K	500 K	0 K	$298 \cdot 15 \mathrm{~K}$	500 K
ZnF 2	0.033	0.043	$0 \cdot 047$	0.047	0.080	0.097
CdF_{2}	0.041	0.043	0.047	0.057	0.061	0.069
HgF_{2}	0.040	0.042	0.047	0.056	0.060	0.068
ZnCl_{2}	0.032	0.044	0.051	0.047	0.053	0.064
CdCl_{2}	0.041	0.048	0.058	0.054	0.067	$0 \cdot 081$
HgCl_{2}	0.038	0.044	0.053	0.051	0.061	0.074
ZnBr_{2}	0.035	0.041	0.049	0.036	0.044	0.069
CdBr_{2}	0.038	0.048	0.060	0.045	0.067	0.085
HgBr_{2}	0.033	0.043	0.054	0.040	0.054	0.067
ZnI_{2}	0.036	0.049	0.060	0.040	0.063	0.081
CdI_{2}	0.035	0.052	0.065	0.042	0.072	0.092
HgI_{2}	0.031	0.043	0.054	0.035	0.050	0.063
ZnFCl	0.042	0.048	0.057	0.042	0.044	0.049
ZnFBr	0.039	0.049	0.061	0.044	0.048	0.056
CdFCl	0.0414	0.049	0.059	0.0416	0.044	0.050
CdFBr	0.034	0.044	0.054	0.043	0.047	0.054
HgFCl	0.038	0.044	0.052	0.036	0.037	0.043
HgFBr	0.033	0.041	0.055	0.056	0.060	0.069
HgClBr	0.034	0.046	0.058	0.039	0.046	0.056
HgClI	0.033	0.049	$0 \cdot 062$	0.038	0.047	0.057
$\mathrm{HgBr} I$	0.034	0.050	0.069	0.034	0.040	0.057

action force constant by Givan and Loewenschuss ${ }^{4}$. The stretching force constants f_{MF} show the expected trend as given in the case of MX_{2} but the trend in f_{MCl} and f_{MBr} is not in good agreement with each other. These vary in the sequence: $f_{\mathrm{Zn}_{\mathrm{n}}-\mathrm{Cl}}>$ $>f_{\mathrm{Cd}-\mathrm{Cl}}<f_{\mathrm{Hg}-\mathrm{Cl}}>f_{\mathrm{Zn}-\mathrm{Cl}}$ and $f_{\mathrm{Zn}-\mathrm{Br}}<f_{\mathrm{Cd}-\mathrm{Br}}>f_{\mathrm{Hl}-\mathrm{Br}}>f_{\mathrm{Zn}-\mathrm{Br}}$. The abrupt change in the value of $f_{\mathrm{Cd}-\mathrm{Br}_{\mathrm{r}}}$ is unexpected. As no side effect has been reported for CdFBr , therefore on the basis of our present results we propose two possibilities: a) either CdFBr does not posses $C_{\infty v}$ point group or b) reported frequency data are not reasonable. On the basis of the above possibilities we understand that this species should be reexamined spectroscopically.

The mean amplitudes of vibrations calculated for the bonded and nonbonded distances at temperatures $T=0,298 \cdot 15,500 \mathrm{~K}$ are tabulated in Table III. The values show expected trend with temperature. In general larger magnitude of bonded mean amplitude of vibration at room temperature for the dihalides of cadmium as compared to the other dihalides of zinc and mercury also supports the trend in stretching force constants (Table I). This implies that the Cd-halogen bond is more flexible as compared to the metal-halogen bond in the dihalides of zinc and mercury.

The bond polarizability derivatives and mean molecular polarizabilities for the molecules under study are collected in Table IV and Table V, respectively. These two parameters exhibit very regular trend and increase with the growing total mass of the molecule. These results will be helpful in the interpretation of Raman intensity and refractometry data.

Table IV
Bond polarizability derivatives (in $10^{-22} \mathrm{~m}^{2}$) of $\mathbf{M}-\mathrm{X}$ bonds in MX_{2} and MXZ type molecules

	Bond	$\bar{\alpha} / \partial R$
	$\mathrm{Zn}-\mathrm{F}$	0.52
$\mathrm{Zn}-\mathrm{Cl}$	1.79	
$\mathrm{Zn}-\mathrm{Br}$	2.38	
$\mathrm{Zn}-\mathrm{I}$	3.33	
$\mathrm{Cd}-\mathrm{F}$	0.79	
$\mathrm{Cd}-\mathrm{Cl}$	2.38	
$\mathrm{Cd}-\mathrm{Br}$	3.07	
$\mathrm{Cd}-\mathrm{I}$	4.23	
	$\mathrm{Hg}-\mathrm{F}$	$1 \cdot 12$
	$\mathrm{Hg}-\mathrm{Cl}$	3.09
	$\mathrm{Hg}-\mathrm{Br}$	3.69
	$\mathrm{Hg}-\mathrm{I}$	4.91

Table V
Molecular polarizabilities (in $10^{-31} \mathrm{~m}^{3}$) of MX_{2} and MXZ type molecules ${ }^{a}$

Molecule	$\sum \alpha_{\\| b 1}$	$\sum \alpha_{\\| \mathrm{n}}$	$\sum 2 \alpha_{\perp}$	α_{M}
ZnF_{2}	$15 \cdot 62$	11.73	$64 \cdot 52$	$30 \cdot 62$
CdF_{2}	$24 \cdot 15$	11.73	$84 \cdot 12$	39.99
HgF_{2}	34.88	11.73	$83 \cdot 15$	$43 \cdot 25$
ZnCl_{2}	$57 \cdot 20$	$29 \cdot 14$	$150 \cdot 23$	78.86
CdCl_{2}	$81 \cdot 13$	$29 \cdot 14$	$161 \cdot 13$	90.47
HgCl_{2}	108.51	$29 \cdot 14$	$157 \cdot 19$	98.29
ZnBr_{2}	81.28	$43 \cdot 43$	201.90	108.87
CdBr_{2}	111.91	43.43	215.39	123.58
HgBr_{2}	$136 \cdot 23$	43.43	205.84	128.50
$\mathrm{ZnI}{ }_{2}$	121.98	56.28	252.42	118.95
CdI_{2}	165.01	56.28	265.02	$162 \cdot 11$
HgI_{2}	$194 \cdot 16$	56.28	$255 \cdot 10$	$168 \cdot 16$
ZnFCl	36.41	20.433	$104 \cdot 16$	53.67
ZnFBr	$48 \cdot 44$	27.58	120.74	65.59
ZnFI	68.79	34.00	130.07	$77 \cdot 43$
CdFCl	52.64	20.43	112.87	$61 \cdot 48$
CdFBr	68.03	27.58	129.62	75.08
CdFI	94.58	34.00	139.39	89.33
HgFCl	71.69	20.43	$111 \cdot 11$	$67 \cdot 75$
HgFBr	85.55	27.58	127.35	80.75
HgFI	114.52	34.00	136.71	95.08

${ }^{a}$ For symbols see text and lit. ${ }^{12}$.

One of the authors (A.N.P.) is thankful to the University Grants Commission, New Delhi for sponsoring his visit to Czechoslovakia under Indo-Czech Cultural Exchange Programme. He would like to thank the Ministry of Education of ČSR for hospitality at the Department of Inorganic Chemistry Faculty of Science, Charles University, Prague.

REFERENCES

1. Loewenschuss A., Ron A., Schnepp O.: J. Chem. Phys. 49, 272 (1968); 50, 2502 (1969).
2. Givan A., Loewenschuss A.: J. Chem. Phys. 64, 1967 (1976); 56, 1851 (1976); 68, 3228, 5653 (1978); Spectrochim. Acta 34A, 765 (1978).
3. Strull A., Givan A., Loewenschuss A.: J. Mol. Spectrosc. 62, 283 (1976).
4. Givan A., Loewenschuss A.: J. Chem. Phys. 72, 3809 (1980).
5. Wilson E. B., Decius J. C., Cross P. C.: Molecular Vibrations. McGraw-Hill, New York 1955.
6. Cyvín S. J.: Molecular Vibrations and Mean Square Amplitudes. Elsevier, Amsterdam 1968.
7. Verma U. P., Sharma D. K., Pandey A. N.: Acta Phys. Pol. A57, 737 (1980).

Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]
8. Pandey A. N., Sharma D. K., Verma U. P., Arora L. D., Gupta S. L., Singh B. P.: Indian J. Pure Appl. Phys. 14, 815 (1976).
9. Müller A., Peacock C. J., Schulze H., Heidborn U.: J. Mol. Struct. 3, 252 (1969).
10. Lippincott E. R., Nagarajan G.: Bull. Soc. Chim. Belg. 74, 551 (1965).
11. Verma U. P., Pandey A. N.: Z. Naturforsch. 33a, 495 (1978).
12. Lippincott E. R., Stutman J. M.: J. Chem. Phys. 68, 2926 (1964).
13. Akišin P. A., Spiridonov V. P.: Kristallografiya 2, 475 (1957).
14. Tables of Interatomic Distrances and Configuration in Molecules and Ions (L. E. Sutton, Ed.). The Chemical Society Publ., London 1958.

[^0]: ${ }^{a}$ P.W. Present work; values in parentheses are $O V F F$ constants, $f_{\mathrm{r}}(K)$ bond stretching force constants, f_{rr} bond-bond interaction force constants, F and F^{\prime} nonbonded interaction force constants, $f_{\Phi}(D)$ angle bending force constant.

[^1]: ${ }^{a}$ P.W. present work.

